
The Bivariate Normal Distribution

Most of the following discussion is taken from Wilks, Statistical Methods in the Atmospheric Sci-

ences, section 4.5.

First, lets define the bivariate normal distribution for two related, normally distributed variables
x ∼ N (µx, σ2

x), and x ∼ N (µy, σ
2
y). Then, the bivariate normal distribution is defined by the

following probability density function:
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(1)
The bivariate normal PDF difines a surface in the x−y plane (see Figure 1). Like its one dimensional
counterpart, the bivariate normal distribution has the following properties:

∫

y

∫

x

f(x, y)dxdy = 1 (2)

f(x, y) >= 0 (3)

As might be inferred, the probability of observing a value x between x0andx1, and y between y0
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Figure 1: Bivariate Normal PDF calculated for parameters based on the Cold Tongue Index (x
axis) and the Southern Oscillation Index (y-axis).
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Figure 2: Scatterplot of the standardized Cold Tongue Index (x axis) and the standardized Southern
Oscillation Index (y-axis).

and y1 (or, P{y0 ≤ y ≤ y1 ∩ x0 ≤ x ≤ x1}) is just the volume integral under the surface f(x, y):

P{y0 ≤ y ≤ y1 ∩ x0 ≤ x ≤ x1} =

∫ y2

y1

∫ x2

x1

f(x, y)dxdy (4)

This integration is typically done numerically.

For normalized variables zx = (x−µx)/σx and zy = (y−µy)/σy , the bivariate normal PDF becomes:

f(zx, zy) =
1

2π
√

1 − ρ2
exp

[

−
z2
x + z2

y − 2ρzxzy

2(1 − ρ2)

]

(5)

The bivariate standard normal distribution has a maximum at the origin. Note that the only
parameter in the bivariate standard normal distribution is the correlation ρ between x and y. If x
and y are independent (ρ = 0) then the surfaces of constant f(x, y) are concentric circles around
the origin. As ρ increases, the distribution is stretched diagonally, forming elliptical isopleths with
positive sloped major axes. For negative ρ, the major axes have a negative slope. Figure 1 depicts
the bivariate standard normal distribution based on a correlation ρ = −0.8 between the Cold
Tongue Index (CTI; SST averaged along the equator) and the Southern Oscillation Index (SOI;
SLP at Tahiti minus SLP at Darwin, or equivalent). Figure 2 depicts the scatterplot of the CTI
and the SOI, which graphically serves the same purpose as a histogram would for a univariate
distribution.

A powerful feature of the bivariate normal distribution is that the conditional probability distri-
bution function for one of the variables, given a known value for the other variable, is normally
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distributed (or, f(x|y = y0) ∼ N (µx|y=y0
, σ2

x|y=y0
)). The conditional mean and variance of x, given

that y = y0 is:

µx|y=y0
= µx + ρσx

(y − µy)

σy

(6)

σx|y=y0
= σx

√

1 − ρ2 (7)

From these parameters, we can determine the probability that x will fall in a given range x0 ≤ x ≤
x1 from the normal distribution. This point is illustrated in Figure 3.
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Figure 3: Conditional Probability from the Bivariate Normal Distribution. Top: bivariate normal
distribution based on a correlation of 0.4. Bottom: conditional distribution for variable x, given that
variable y = 1.5. The shading indicates the probability that x will exceed 1.5 standard deviations
if nothing is known about y (dark shading for lower curve), and if it is known that y = 1.5 (light
shading for upper curve). Note the large difference in probabilities, though the correlation is not
exceptionally high.
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There are a couple of additional features to note here. First, the major axis of the ellipse defined by
the bivariate normal distribution may be obtained by linear least squares regression. In this case,
the least squares regression is taken to minimize the perpindicular distance between the data and
the regression line. This can be accomplished with Empirical Orthogonal Function analysis, in that
the regression analysis simply rotates the coordinate system. The leading eigenvector from the EOF
analysis points in the direction of the major axis of the ellipse, and the distance from the maximum
of the distribution (at µx, µy) to an isopleth of the distribution is given by χ2

K(F ) ·
√

λ1, where
K = 2 (for a bivariate distribution), and F is the cumulative probability (the volume under the area
bounded by the ellipse). The minor axis is defined in the direction of the second eigenvector (always
perpindicular to the first), and has similarly defined distances to the isopleths of the distribution
function. See Wilks, Example 9.4 (pp 372–373).
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