ECE 4260 Problem Set 9 Solutions

Problem 9.1 (9.2 in Stark and Woods)

(a)

$$
\begin{aligned}
\mu_{X}(t) & \triangleq E[X(t)] \\
& =\sum_{n=-\infty}^{+\infty} E\left[X[n] \frac{\sin \pi(t-n T) / T}{\pi(t-n T) / T}\right. \\
& =\mu_{X} \sum_{n=-\infty}^{+\infty} 1 \frac{\sin \pi(t-n T) / T}{\pi(t-n T) / T} \\
& =\mu_{X} \cdot 1 \quad(\text { since } g(t)=1 \text { is bandlimited with samples } g(n T)=1) \\
& =\mu_{X} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
R_{X X}\left(t_{1}, t_{2}\right) & \triangleq E\left[X\left(t_{1}\right) X^{*}\left(t_{2}\right)\right] \\
& =\sum_{\text {all } m, n} R_{X X}[m-n] \operatorname{sinc}\left(\frac{t_{1}-m T}{T}\right) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right)
\end{aligned}
$$

where the sinc function is defined as $\operatorname{sinc}(\tau) \triangleq \frac{\sin \pi \tau}{\pi \tau}$, so we can write the above as

$$
\begin{aligned}
R_{X X}\left(t_{1}, t_{2}\right)= & R_{X X}[0] \cdot \sum_{n} \operatorname{sinc}\left(\frac{t_{1}-n T}{T}\right) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right) \\
& +R_{X X}[1] \cdot \sum_{n} \operatorname{sinc}\left(\frac{t_{1}-(n+1) T}{T}\right) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right)+\cdots \\
= & \sum_{m} R_{X X}[m] r_{m}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

where $r_{m}\left(t_{1}, t_{2}\right) \triangleq \sum_{n} \operatorname{sinc}\left(\frac{t_{1}-(n+m) T}{T}\right) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right)$, so then we have

$$
\begin{aligned}
R_{X X}\left(t_{1}, t_{2}\right) & =\sum_{m} R_{X X}[m] \operatorname{sinc}\left(\frac{\left(t_{1}-t_{2}\right)-m T}{T}\right) \quad \text { (see below) } \\
& =R_{X X}\left(t_{1}-t_{2}\right) \text { and so } X(t) \text { is WSS. }
\end{aligned}
$$

To see that $r_{m}\left(t_{1}, t_{2}\right)=\operatorname{sinc}\left(\frac{\left(t_{1}-t_{2}\right)-m T}{T}\right)$, we proceed as follows: Fix m and t_{1} and define the function $g\left(t_{2}\right) \triangleq \operatorname{sinc}\left(\frac{\left(t_{1}-t_{2}\right)-m T}{T}\right)$. Clearly g is bandlimited with coefficients $g(n T)=\operatorname{sinc}\left(\frac{t_{1}-(n+m) T}{T}\right)$,
so that

$$
\begin{aligned}
g\left(t_{2}\right) & =\operatorname{sinc}\left(\frac{\left(t_{1}-t_{2}\right)-m T}{T}\right) \\
& =\sum_{n} g(n T) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right) \\
& =\sum_{n} \operatorname{sinc}\left(\frac{t_{1}-(n+m) T}{T}\right) \operatorname{sinc}\left(\frac{t_{2}-n T}{T}\right) .
\end{aligned}
$$

Problem 9.2 (9.3 in Stark and Woods)

The random sequence $B[n]$ is Bernoulli and its values ± 1 occur with equal probabilities $1 / 2$. We have $X(t) \triangleq \sqrt{p} \sin \left(2 \pi f_{0} t+B[n] \frac{\pi}{2}\right)$ where \sqrt{p} and f_{0} are given real numbers.
(a)

$$
\begin{aligned}
\mu_{X}(t) & \triangleq E[X(t)] \\
& =E\left[\sqrt{p} \sin \left(2 \pi f_{0} t+B[n] \frac{\pi}{2}\right)\right] \\
& =\sqrt{p} E\left[\sin \left(2 \pi f_{0} t+B[n] \frac{\pi}{2}\right)\right] \\
& =\sqrt{p}\left(\frac{1}{2} \sin \left(2 \pi f_{0} t+\frac{\pi}{2}\right)+\frac{1}{2} \sin \left(2 \pi f_{0} t-\frac{\pi}{2}\right)\right) \\
& =\sqrt{p}\left(\frac{1}{2} \cos \left(2 \pi f_{0} t\right)+\frac{1}{2}\left(-\cos \left(2 \pi f_{0} t\right)\right)\right) \\
& =\sqrt{p}\left(\frac{1}{2} \cos \left(2 \pi f_{0} t\right)-\frac{1}{2} \cos \left(2 \pi f_{0} t\right)\right) \\
& =0 .
\end{aligned}
$$

(b) For this real-valued process, $K_{X X}(t, s)=E[X(t) X(s)]$ since the means are zero. To evaluate $E[X(t) X(s)]$, we consider two cases:
(i) Case 1: $n T \leq t, s<(n+1) T$, i.e. t and s are in the same half-open interval $[n T,(n+1) T)$.

Then

$$
\begin{aligned}
E[X(t) X(s)] & =\frac{1}{2} \sqrt{p} \sin \left(2 \pi f_{0} t+\frac{\pi}{2}\right) \sqrt{p} \sin \left(2 \pi f_{0} s+\frac{\pi}{2}\right)+\frac{1}{2} \sqrt{p} \sin \left(2 \pi f_{0} t-\frac{\pi}{2}\right) \sqrt{p} \sin \left(2 \pi f_{0} s-\frac{\pi}{2}\right) \\
& =\frac{1}{2} p \cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{0} s\right)+\frac{1}{2} p \cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{0} s\right) \\
& =p \cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{0} s\right) .
\end{aligned}
$$

(ii) Case 2: $n T \leq t<(n+1) T, m T \leq s<(m+1) T$, with $n \neq m$, i.e. t and s are in different intervals. In this case $X(t)$ and $X(s)$ are independent, so $E[X(t) X(s)]=E[X(t)] E[X(s)]$, but here the means are zero, hence $E[X(t) X(s)]=0$.

Combining the two cases we can write

$$
\begin{aligned}
K_{X X}(t, s) & =E[X(t) X(s)] \\
& =\left\{\begin{array}{cc}
p \cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{0} s\right), & n T \leq t, s<(n+1) T \text { for some integer } n . \\
0, & \text { else. }
\end{array}\right.
\end{aligned}
$$

Problem 9.3 (9.25 in Stark and Woods)

(a)

$$
\begin{aligned}
\dot{\mu}_{Y}(t)+a \mu_{Y}(t)=\mu_{X} & \quad \text { and } \quad h(t)=e^{-a t} u(t), \\
\mu_{Y}(t) & =\mu_{X} \int_{0}^{\infty} e^{-a t} d t \\
& =\mu_{X} / a
\end{aligned}
$$

(b) From (9.5-5a)

$$
\begin{aligned}
R_{X Y}(\tau) & =h^{*}(-\tau) * R_{X X}(\tau) \\
& =\int_{-\infty}^{\infty} h^{*}(-t) R_{X X}(\tau-t) d t \\
& =\int_{-\infty}^{\infty} h^{*}\left(t^{\prime}\right) R_{X X}\left(\tau+t^{\prime}\right) d t^{\prime}, \quad \text { with } t^{\prime} \triangleq-t \\
& =\int_{0}^{\infty} e^{-a t^{\prime}}\left[\delta\left(\tau+t^{\prime}\right)+\mu_{X}^{2}\right] d t^{\prime} \\
& =\left\{\begin{array}{cc}
e^{a \tau}+\mu_{X}^{2} / a, & \tau \leq 0 \\
0+\mu_{X}^{2} / a, & \tau>0
\end{array}\right. \\
& =e^{a \tau} u(-\tau)+\mu_{X}^{2} / a \quad \text { for all } \tau
\end{aligned}
$$

Then, from ($9.5-5 \mathrm{~b}$),

$$
\begin{aligned}
R_{Y Y}(\tau) & =\int_{-\infty}^{\infty} h\left(\tau_{1}\right) R_{X Y}\left(\tau-\tau_{1}\right) d \tau_{1} \\
& =\int_{0}^{\infty} e^{-a \tau_{1}}\left[e^{a\left(\tau-\tau_{1}\right)}+\mu_{X}^{2} / a\right] d \tau_{1}, \quad \text { for } \quad \tau<0, \\
& =e^{a \tau} \int_{0}^{\infty} e^{-2 a \tau_{1}} d \tau_{1}+\mu_{X}^{2} / a \\
& =e^{a \tau} / 2 a+\left(\mu_{X} / a\right)^{2}, \tau<0 .
\end{aligned}
$$

For $\tau>0$,

$$
\begin{aligned}
R_{Y Y}(\tau) & =e^{a \tau} \int_{\tau}^{\infty} e^{-2 a \tau_{1}} d \tau_{1}+\left(\mu_{X} / a\right)^{2}, \\
& =e^{-a \tau} / 2 a+\left(\mu_{X} / a\right)^{2}, \tau<0 .
\end{aligned}
$$

Thus for all τ, we have

$$
R_{Y Y}(\tau)=e^{-a|\tau|} / 2 a+\left(\mu_{X} / a\right)^{2}
$$

(c) Since $\mu_{Y}=\mu_{X} / a$, then for the covariance, we have

$$
K_{Y Y}(\tau)=e^{-a|\tau|} / 2 a \quad \text { and } \quad \sigma_{Y}^{2}=1 / 2 a
$$

Problem 9.4 (9.32 in Stark and Woods)

(a) The input process $X(t)$ has constant mean 128. So $\mu_{Y}(t)=\mu_{X} H(0)=128 \times 1=128$.
(b) For the covariance function,

$$
\begin{equation*}
K_{Y Y}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|H(\omega)|^{2} S_{X_{0} X_{0}}(\omega) e^{+j \omega \tau} d \omega, \tag{p32eq1}
\end{equation*}
$$

where $X_{c} \triangleq X-\mu_{X}$ is the centered version of X. Also

$$
\begin{aligned}
|H(\omega)|^{2} & =H(\omega) H^{*}(\omega) \\
& =\frac{1}{1+j \omega} \frac{1}{1-j \omega} \\
& =\frac{1}{1+\omega^{2}} .
\end{aligned}
$$

The PSD $S_{X_{0} X_{0}}$ is determined as the FT of $K_{X X}$:

$$
\begin{aligned}
S_{X_{\mathrm{o}} X_{\mathrm{o}}}(\omega) & =\int_{-\infty}^{+\infty} 1000 e^{-10|\tau|} e^{-j \omega \tau} d \tau \\
& =1000\left(\int_{-\infty}^{0} e^{+(10-j \omega) \tau} d \tau+\int_{0}^{+\infty} e^{-(10+j \omega) \tau} d \tau\right) \\
& =1000\left(\frac{1}{10-j \omega}+\frac{1}{10+j \omega}\right) \\
& =\frac{20,000}{100+\omega^{2}} .
\end{aligned}
$$

Now, we can plug into (p32eq1) to obtain

$$
\begin{aligned}
K_{Y Y}(\tau) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{1+\omega^{2}} \frac{20,000}{100+\omega^{2}} e^{+j \omega \tau} d \omega \\
& =\frac{20,000}{2 \pi(99)} \int_{-\infty}^{+\infty}\left(\frac{1}{1+\omega^{2}}-\frac{1}{100+\omega^{2}}\right) e^{+j \omega \tau} d \omega \\
& =\frac{20,000}{99}\left(\frac{1}{2} e^{-|\tau|}-\frac{1}{20} e^{-10|\tau|}\right) \\
& =101.01 e^{-|\tau|}-10.10 e^{-10|\tau|}
\end{aligned}
$$

