ICE 4260 Problem Set 8 Solutions

Problem 8.1

(a) I do not see any way to get by with less than $\mathbf{8}$ states:

$$
A^{\top} P_{k}=P_{k+1}
$$

For Limiting state, $A^{T} P=P$ or $\left(A^{\top}-I\right) P=0$
Idea:

$$
\begin{aligned}
& p_{1}=\frac{2}{3} p_{1}+\frac{1}{2} p_{5} \\
& p_{2}=\frac{1}{3} p_{1}+\frac{1}{2} p_{5} \text { we apo have } \\
& p_{3}=\frac{1}{2} p_{2}+2 / 5 p_{6} \\
& p_{1}+p_{2} \cdots p_{8}=1 . \\
& p_{4}=\frac{1}{2} p_{2}+3 / 5 p_{6} \\
& \text { The eft's to the } \\
& p_{5}=\frac{1}{2} p_{3}+2 / 5 p_{7} \\
& p_{6}=\frac{1}{2} p_{3}+3 / 5 p_{7} \\
& p_{7}=\frac{2}{5} p_{4}+1 / 3 p_{8} \\
& p_{8}=\frac{3}{5} p_{4}+2 / 3 p_{8} \\
& \text { leptare mitenoush. } \\
& A^{T}=I \text { is singular. } \\
& \text { we replace any } \\
& \text { row with }(1, \cdots t) \text {, ane } \\
& \text { adjust te RATs. }
\end{aligned}
$$

If we elimate the last eg is substitute $p_{n}+t p_{8}=1$, with ar RHS of $\left[0, \cdots 0,1 J^{\top}\right.$,
we can solve the eq's. (alternatively, since A is sparse, ur anuld soberly, hand.)

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
P^{\top}= & {[.1429, .0952, .0552, .1190} \\
& .0952, .1190, .1190, .2143] \\
\text { Pcriccess })= & \left(\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 3 / 5,3 / 5,3 / 5,2 / 3\right) P \\
= & .5452
\end{aligned}
\end{aligned}
$$

Problem 8.2 (8.39 in Stark and Woods)

(a) With the two states $X=1,2$, we have state probability vector \mathbf{p} at time $n(\geq 0)$ given as

$$
\begin{aligned}
\mathbf{p}[n]= & (P[X[n]=1, P[X[n]=2]) \\
= & \left(P[X[n-1]=1] p_{11}+P[X[n-1]=2] p_{21}, P[X[n-1]=1] p_{12}+P[X[n-1]=2] p_{22}\right) \\
= & \mathbf{p}[n-1] \mathbf{P}, \quad \text { with } \mathbf{P} \text { the state-transition matrix, } \\
= & \mathbf{p}[n-2] \mathbf{P}^{2}, \\
& \vdots \\
= & \mathbf{p}[0] \mathbf{P}^{n} .
\end{aligned}
$$

(b)

(c) Let p be the probability of the event \{first transition to state 2 occuring at time n \}. Then, given $X[0]=1$, we have

$$
\begin{aligned}
p & =p_{11}^{n-1} p_{12} \\
& =(0.9)^{n-1}(0.1) \\
& =(0.1)(0.9)^{n-1} .
\end{aligned}
$$

Problem 8.3 (8.40 in Stark and Woods)

(a)

$$
H(\omega)=\frac{1}{1-r e^{-j \omega}} \quad \text { and } \quad h[n]=r^{n} u[n]
$$

so

$$
\begin{aligned}
S_{X X}(\omega) & =|H(\omega)|^{2} S_{Z Z}(\omega) \\
& =\frac{1}{\left|1-r e^{-j \omega}\right|^{2}} \sigma_{Z}^{2} \\
& =\frac{\sigma_{Z}^{2}}{1+r^{2}-2 r \cos \omega}
\end{aligned}
$$

(b) We know $R_{X X}[m]=\left(h[m] * h^{*}[-m]\right) * \sigma_{Z}^{2} \delta[m]$. Here, we have

$$
\begin{aligned}
h[n] * h^{*}[-n] & =\sum_{k=-\infty}^{+\infty} h[k] h^{*}[-(n-k)] \\
& =\sum_{k=-\infty}^{+\infty} r^{k} u[k] r^{-(n-k)} u[k-n] \\
& =r^{-n} \sum_{k=0}^{+\infty} r^{2 k} u[k-n] \\
& =\left\{\begin{array}{ll}
\frac{r^{n}}{1-r^{2}}, & n \geq 0 \\
\frac{r^{-n}}{1-r^{2}}, & n \leq 0 \\
& =\frac{r^{|n|}}{1-r^{2}},
\end{array} \quad \text { for all } n .\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
R_{X X}[m] & =\left(h[m] * h^{*}[-m]\right) * \sigma_{Z}^{2} \delta[m] \\
& =\frac{r^{|m|}}{1-r^{2}} * \sigma_{Z}^{2} \delta[m] \\
& =\left(\frac{r^{|m|}}{1-r^{2}} * \delta[m]\right) \sigma_{Z}^{2} \\
& =\frac{r^{|m|}}{1-r^{2}} \sigma_{Z}^{2}
\end{aligned}
$$

Problem 8.4 (8.42 in Stark and Woods)
$(8.42$ in siw)
(a) FOR ANY INDEPRNDENT FNCAKMENTS PROCCSS: Where $X \operatorname{loj}=0 ; X(n)=\sum_{k=1}^{n} w(n 9 ;$ and w(n) is ws uncorpelated n oise witho $\overline{W[x]}=\bar{W} ; \quad \overline{W^{2}(w)}=\overline{W^{2}}$; and $\sigma_{W(n)}^{2}=\nabla_{W}^{2}$:

$$
E\left(x[n, 1)=n, \bar{W}=\mu_{z}[n]\right.
$$

Here: $\vec{W}=\frac{1}{2}\left(s_{1}-s_{2}\right)$
(b)

$$
R_{x \infty}\left[n_{1}, n_{2}\right]=E\left(s\left[n_{1}\right] \Sigma\left[n_{2}\right]\right)
$$

Speccial cases: tet $n_{1}=n_{2}$

$$
=n_{1}\left(\bar{w}^{2}+\left(n_{1}-1\right) \bar{w}^{2}\right)
$$

$$
\begin{aligned}
& R_{\Sigma X}\left[n_{1}, n_{1}\right]=\overline{Z\left[n_{1}\right]}=E\left\{\sum_{i=1}^{n_{1}} w(i) \sum_{j=1}^{n_{1}} w(j)\right\}
\end{aligned}
$$

Let $n_{1} \neq n_{2} \quad n_{2}>n_{1}$ wo loss ofjenerality,

$$
\begin{aligned}
& E\left(\Sigma\left(n_{1}\right] \Sigma\left(n_{2}\right]\right)=E\left[\left(\Sigma\left(n_{1}\right]\right)\left(\Delta\left[n_{1}\right]+\sum_{n=n_{1}+1}^{n_{2}^{2}} w\left[n^{2}\right]\right)\right] \\
& =\bar{X}\left[n_{1}\right]+\overline{\Delta\left[n_{1}\right]} \cdot\left(n_{2}-n_{1}\right) \bar{W} \\
& =\bar{n}_{1} \bar{W}^{2}+\left(n_{1}\right)\left(n_{1}-1\right) \bar{W}^{2}+n_{1} \bar{W}\left(n_{2}-n_{1}\right) \bar{W} \\
& =n_{1} \bar{W}^{2}+\left[\left(n_{1}\left(n_{1}-1\right)+n_{1}\left(n_{2}-n_{1}\right)\right) \bar{W}^{2}\right) \\
& =n_{1}\left(\overline{W^{2}}\left[n_{1}-1+n_{2}-n_{1}\right] \bar{W}^{2}\right] \\
& =n_{1}\left(\bar{W}^{2}+\left(n_{2}-1\right) \bar{W}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{W}=\frac{1}{2}\left(s_{1}-S_{2}\right) \\
& \bar{W}=\frac{1}{2}\left(s_{1}^{2}+s_{2}^{2}\right)
\end{aligned}
$$

