ECE 4260 Problem Set 6 Solutions

Problem 6.1

(a) $\overline{X^{2}[m]}=R_{x}[0]=\exp (-|0| / 5)+0.25=1.25$
(b) Power in $X[n]$ equals $\overline{X^{2}[0]}=1.25 . \sigma_{X[m]}^{2}=\overline{X^{2}[0]}-0.25=1$.
(c) The diagonal elements both are equal to $\sigma_{X[m]}^{2}=1$. The off-diagonal elements are equal to $e^{-\frac{2}{5}}$.
(d) $\mu_{W}[n]=(1-\alpha) \mu_{x}[n]=0.5(1-\alpha) . R_{W}[m]=\left(-\alpha \delta[m+1]+\left(1+\alpha^{2}\right) \delta[m]-\alpha \delta[m-1]\right)$ convloved with $R_{x}[m]$ which is equal to $.25\left(1-2 \alpha+\alpha^{2}\right)+\left(1+\alpha^{2}\right) \exp (-|m| / 5)-$ $\alpha(\exp (-|m-1| / 5)-\alpha(\exp (-|m+1| / 5)$.

Problem 6.2 (8.2 in Stark and Woods)

The book's explanation below seems a bit of overkill. For a simpler answer, consider the random variables X, Y, and Z derived as follows: X is the number of heads on coin flip 1 . Y is the number of heads on independent coin flip $2 . \mathrm{Z}$ is the sum of the number of heads on the two flips modulo 2. Clearly they are pairwise independent. But knowledge of any two determines the third.

Book answer:

Given the N-dimensional vector $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ whose components are pairwise independent,

$$
\text { i.e. } f\left(x_{i}, x_{j}\right)=f\left(x_{i}\right) f\left(x_{j}\right) \quad \text { for all } i \neq j
$$

we want to show that it is possible that,

$$
f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \neq f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{N}\right)
$$

i.e. joint independence does not follow. Consider a case with $N=3: \quad f\left(x_{3}, x_{2}, x_{1}\right)$. By the chain rule for pdf's we then have $f\left(x_{3}, x_{2}, x_{1}\right)=f\left(x_{3} \mid x_{2}, x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{1}\right)$ and from pairwise independence we have $f\left(x_{2}, x_{1}\right)=f\left(x_{2}\right) f\left(x_{1}\right), f\left(x_{3}, x_{1}\right)=f\left(x_{3}\right) f\left(x_{1}\right)$, and $f\left(x_{3}, x_{2}\right)=f\left(x_{3}\right) f\left(x_{2}\right)$, substituting in, we conclude

$$
f\left(x_{3}, x_{2}, x_{1}\right)=f\left(x_{3} \mid x_{2}, x_{1}\right) f\left(x_{2}\right) f\left(x_{1}\right) .
$$

The question is now whether $f\left(x_{3}, x_{1}\right)=f\left(x_{3}\right) f\left(x_{1}\right)$, and $f\left(x_{3}, x_{2}\right)=f\left(x_{3}\right) f\left(x_{2}\right)$ provide enough information to conclude $f\left(x_{3} \mid x_{2}, x_{1}\right)=f\left(x_{3}\right)$. Alas, this is not so. ${ }^{1}$

Here is a specific counterexample: Let X_{1} and X_{2} be two independent RVs, each uniformly distributed on the interval $[-\pi,+\pi]$, i.e. $X_{i}: U[-\pi,+\pi], i=1,2$. In terms of pdf's, we have

$$
f_{X_{i}}\left(x_{i}\right)=\left\{\begin{array}{cc}
\frac{1}{2 \pi}, & \left|x_{i}\right| \leq \pi \\
0, & \text { else }
\end{array}\right.
$$

Next, define a third RV by $X_{3} \triangleq\left(X_{1}+X_{2}\right) \bmod \pi$, meaning

$$
X_{3}=\left\{\begin{array}{cc}
X_{1}+X_{2}-2 \pi, & X_{1}+X_{2}>\pi \\
X_{1}+X_{2}, & \left|X_{1}+X_{2}\right| \leq \pi \\
X_{1}+X_{2}+2 \pi, & X_{1}+X_{2}<-\pi
\end{array}\right.
$$

Upon some reflection, we see

$$
f_{X_{3} \mid X_{1}}\left(x_{3} \mid x_{1}\right)=\frac{1}{2 \pi}, \quad\left|x_{3}\right| \leq \pi
$$

and the same for $f_{X_{3} \mid X_{2}}$, and thus since X_{1} and X_{2} are independent, we can conclude that X_{1}, X_{2}, X_{3} are pairwise independent. However, by the definition of X_{3}, we see that $\left(X_{1}+\right.$ $\left.X_{2}\right) \bmod \pi$ determines X_{3}, specifically

$$
f_{X_{3} \mid X_{1}, X_{2}}\left(x_{3} \mid x_{1}, x_{2}\right)=\delta\left(x_{3}-\left(x_{1}+x_{2}\right) \bmod \pi\right) .
$$

Thus, joint independence does not prevail.

[^0]
Problem 6.3 (8.6 in Stark and Woods)

(a) Let events S_{1} and S_{2} be defined as follows for two times $t_{2}>t_{1}>0$:

$$
\begin{aligned}
& S_{1} \triangleq\left\{\text { no photon emitted prior to time } t_{1}\right\} \\
& S_{2} \triangleq\left\{\text { at least one photon emitted prior to time } t_{2}\right\}
\end{aligned}
$$

By definition

$$
\begin{aligned}
P\left[S_{2} \mid S_{1}\right] & =\frac{P\left[S_{2} S_{1}\right]}{P\left[S_{1}\right]} \text { and } \\
P\left[S_{1}\right] & =1-\int_{0}^{t_{1}} \lambda e^{-\lambda t} d t=e^{-\lambda t_{1}}
\end{aligned}
$$

Thus

$$
P\left[S_{2} S_{1}\right]=\int_{t_{1}}^{t_{2}} \lambda e^{-\lambda t} d t=e^{-\lambda t_{1}}-e^{-\lambda t_{2}}
$$

and so

$$
\begin{aligned}
P\left[S_{2} \mid S_{1}\right] & =\frac{e^{-\lambda t_{1}}-e^{-\lambda t_{2}}}{e^{-\lambda t_{1}}} \\
& =1-e^{-\lambda\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

(b) Let us define four events as follows:
$A \triangleq\left\{\right.$ at least one photon emitted prior to time t_{2} from 3 independent sources \},
$S_{1} \triangleq\left\{\right.$ no photon emitted from source 1 prior to time $\left.t_{2}\right\}$,
$S_{2} \triangleq\left\{\right.$ no photon emitted from source 2 prior to time $\left.t_{2}\right\}$, and
$S_{3} \triangleq\left\{\right.$ no photon emitted from source 3 prior to time $\left.t_{2}\right\}$.
Then $P[A]=1-P\left[S_{1} S_{2} S_{3}\right]$, and because the three sources are independent $P\left[S_{1} S_{2} S_{3}\right]=$ $P\left[S_{1}\right] P\left[S_{2}\right] P\left[S_{3}\right]$. Furthermore $P\left[S_{i}\right]=1-\int_{0}^{t_{2}} \lambda e^{-\lambda t} d t=e^{-\lambda t_{2}}$. Thus

$$
\begin{aligned}
P[A] & =1-P\left[S_{1}\right] P\left[S_{2}\right] P\left[S_{3}\right] \\
& =1-e^{-3 \lambda t_{2}} .
\end{aligned}
$$

Problem 6.4 (8.14 in Stark and Woods)

(a) Denoting the outcomes as ζ_{i}, we have

$$
\begin{aligned}
\mu_{X}[n] & \triangleq E[X[n]] \\
& =\sum_{\zeta_{i}} P\left[\left\{\zeta_{i}\right\}\right] X\left[n, \zeta_{i}\right] \\
& =\frac{1}{3}\left(3 \delta[n]+u[n-1]+\cos \frac{\pi n}{2}\right) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
R_{X}[m, n] & \triangleq E\left[X[m] X^{*}[n]\right] \\
& =\sum_{\zeta_{i}} P\left[\left\{\zeta_{i}\right\}\right] X\left[m, \zeta_{i}\right] X^{*}\left[n, \zeta_{i}\right] \\
& =\frac{1}{3}\left(9 \delta[m] \delta[n]+u[m-1] u[n-1]+\cos \frac{\pi m}{2} \cos \frac{\pi n}{2}\right) .
\end{aligned}
$$

(c) We can summarize the $\mathrm{RVs} X[0]$ and $X[1]$ with the following table.

ζ_{i}	p	$X[0]$	$X[1]$
a	$\frac{1}{3}$	3	0
b	$\frac{1}{3}$	1	1
c	$\frac{1}{3}$	0	0

Thus $P[X[0]=3, X[1]=0]=P[\{a\}]=\frac{1}{3}$. The respective marginal probabilities are found as $P[X[0]=3]=\frac{1}{3}$ and $P[X[1]=0]=\frac{2}{3}$. Multiplying, we find

$$
\begin{aligned}
P[X[0] & =3, X[1]=0]=\frac{1}{3} \\
& \neq \frac{1}{3} \frac{2}{3} \\
& =P[X[0]=3] P[X[1]=0]
\end{aligned}
$$

therefore the RVs $X[0]$ and $X[1]$ are not independent.

Problem 6.5 (8.15 in Stark and Woods)

(a) The random variables $X[n]$ and $X[n-1]$ are jointly Gaussian distributed with zero means and covariance matrix

$$
\mathbf{K}=\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right] \quad \text { with }|\rho|<1 .
$$

The determinant of this matrix is $\operatorname{det} \mathbf{K}=\sigma^{4}\left(1-\rho^{2}\right)$, and the inverse matrix is found as

$$
\mathbf{K}^{-1}=\frac{1}{\sigma^{4}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma^{2} & -\rho \sigma^{2} \\
-\rho \sigma^{2} & \sigma^{2}
\end{array}\right]
$$

We can then write their joint pdf as

$$
f_{X}\left(x_{n}, x_{n-1}\right)=\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(x_{n}^{2}-2 \rho x_{n} x_{n-1}+x_{n-1}^{2}\right)\right) .
$$

Also the marginal pdf for $X[n-1]$ is given directly as

$$
f_{X}\left(x_{n-1}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x_{n-1}^{2}}{2 \sigma^{2}}\right)
$$

We can the write the conditional density

$$
\begin{aligned}
f_{X}\left(x_{n} \mid x_{n-1}\right) & =\frac{f_{X}\left(x_{n}, x_{n-1}\right)}{f_{X}\left(x_{n-1}\right)} \\
& =\frac{1}{\sqrt{2 \pi} \sigma \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(x_{n}-\rho x_{n-1}\right)^{2}\right),
\end{aligned}
$$

after recognizing the perfect square $x_{n}^{2}-2 \rho x_{n} x_{n-1}+\rho^{2} x_{n-1}^{2} \equiv\left(x_{n}-\rho x_{n-1}\right)^{2}$. Recognizing that this conditional density is $N\left(\rho x_{n-1}, \sigma^{2}\left(1-\rho^{2}\right)\right)$, we can immediately write its conditional mean

$$
E[X[n] \mid X[n-1]]=\rho X[n-1] .
$$

(b) This predictor minimizes the mean square error over all functions $g X[n-1)$), i.e. it minimizes $E\left[\left(X[n]-g(X[n-1])^{2}\right]\right.$ over all functions g. c.f. Example 4.3-4.

Problem 6.6 (8.17 in Stark and Woods)

We need the joint pdf $f_{T}\left(t_{2}, t_{1} ; 10,5\right)$. Now

$$
\begin{aligned}
T[10] & =\sum_{k=1}^{10} \tau[k] \\
& =T[5]+\sum_{k=6}^{10} \tau[k] .
\end{aligned}
$$

Calling $X \triangleq \sum_{k=6}^{10} \tau[k]$, we see that by definition, X and $T[5]$ are independent. This since $T[5]$ is a sum of earlier $\tau[k]^{\prime} s$ not included in the sum that is X. Thus

$$
\begin{aligned}
f_{T}\left(t_{2}, t_{1} ; 10,5\right) & =f_{T}\left(t_{2} \mid t_{1} ; 10,5\right) f_{T}\left(t_{1} ; 5\right) \\
& =f_{T}\left(t_{2}-t_{1} ;(10-5)\right) f_{T}\left(t_{1} ; 5\right) \\
& =f_{T}\left(t_{2}-t_{1} ; 5\right) f_{T}\left(t_{1} ; 5\right) \\
& =\frac{\left(\lambda\left(t_{2}-t_{1}\right)\right)^{4}}{4!} \lambda e^{-\lambda\left(t_{2}-t_{1}\right)} \frac{\left(\lambda t_{1}\right)^{4}}{4!} \lambda e^{-\lambda t_{1}}, \quad t_{2} \geq t_{1} \geq 0 .
\end{aligned}
$$

[^0]: ${ }^{1}$ There is one exception to this and that is the case where the RVs are jointly Gaussian distributed.

