ECE 4260 Problem Set 6 Solutions

Problem 6.1

X2[m| = R, [0] = exp(—[0]/5) +0.25 = 1.25

Power in X[n] equals X?2[0] = 1.25. 0%

X2[0] — 0.25 = 1.

The diagonal elements both are equal to O’j = 1. The off-diagonal elements are equal

[m]

_2
to e” 5.

e [n] = (1 —a)p, [n] = 0.5(1 —a). R, [m] = (—ad[m+ 1]+ (1 +a?)d[m] — ad[m —1])
convloved with R, [m] which is equal to .25(1 — 2o + o?) + (1 + o?)exp(—|m|/5) —
alexp(—|m — 1|/5) — a(exp(—|m + 1[/5).

Problem 6.2 (8.2 in Stark and Woods)

The book’s explanation below seems a bit of overkill. For a simpler answer, consider the

random variables X, Y, and Z derived as follows: X is the number of heads on coin flip 1.

Y is the number of heads on independent coin flip 2. Z is the sum of the number of heads

on the two flips modulo 2. Clearly they are pairwise independent. But knowledge of any

two determines the third.



Book answer:

Given the N —dimensional vector (xy, 23, ... 25 ) whose components are pairwise independent,
ie floizj) = f(x)f(z;) forallis ],
we want to show that it 1s possible that,
flzr, 22, zn) # flz)fla2) - flan)

1.e.  joint independence does not follow. Consider a case with N = 3: fz3, @2, @1).
By the chain rule for pdf's we then have f(z3, @9,21) = flaglzs, @) f(ae|z))f(z) and
from pairwise independence we have f(xzo,21) = flza)f(21), f(2z,21) = flzz)f(x1), and
flaa, z9) = flzz)f(xy), substituting 1n, we conclude

flea, @y, 1) = f(asl@y, @) flas) f21).

The question 1s now whether f(x3,21) = f(x3)f(x1), and f(z3,x2) = f(x3)f(x2) provide
enough information to conclude f(z3|@a,x1) = f(x3). Alas, this is not so. !

Here 15 a specific counterexample: Let X| and X3 be two independent RVs, each umiformly
distributed on the interval [—m, +7], 1.e. X;: Ul—w, +7],2 =1,2. In terms of pdf’s, we have

L‘ x| < m,
fr)={ 5 =T

else.



Next, define a third RV by X3 £ (X, + X,) mod 7w, meaning
Xl—f—Xg—Q:'r; Ni+Xo>m

X3 = Xy + Xy, Xp+ X[ <,
Xi+Xo+42n, X1 +X) < —m.

Upon some reflection, we see

1 _
Fxa|x, (z3]z1) = 5 o3| < =,

and the same for fy; x,, and thus since X; and X3 are independent, we can conclude that

X1, X2, X3 are pairwise independent. However, by the definition of X3, we see that (X +

X7) mod 7 determines X3z, specifically

Fxsixy.x0 (®al@, @2) = 0(xg — (21 +22) mod 7).

Thus, joint independence does not prevail.

'There is one exception to this and that is the case where the RVs are jointly Gaussian distributed.

Problem 6.3 (8.6 in Stark and Woods)

(a) Let events S| and Sy be defined as follows for two times t3 > ¢; > 0:

{no photon emitted prior to time t;}

S1
{ at least one photon emitted prior to time t3}.

So

> e

By definition

‘ P[S,S
P[S:|S] = IL.—;[]‘] and

1
P[S)] = 1- / Ae~Mdt = e~M1,
0

Thus
t

2
/\e—'\tdt — e—At] e e—Atz

P[SyS1] = /

i1

and so
—Aty —Ato
€ — €
P[S:|81)] = ——f—

— J= e—‘\(tz—tl).



(b) Let us define four events as follows:

A £ {at least one photon emitted prior to time ¢; from 3 independent sources},
S; £ {no photon emitted from source 1 prior to time ¢},

Sy & {no photon emitted from source 2 prior to time #5}, and

Sz = {no photon emitted from source 3 prior to time #}.

Then P[A] = 1 — P[S,5,5;3], and because the three sources are independent P[S5;5353] =
P[S1]P[S,]P[Ss]. Furthermore P[S;] =1 — [;* Ae™™dt = e**2. Thus

P[A] = 1- P[Si]P[$2]P[Ss]

I e

Problem 6.4 (8.14 in Stark and Woods)
(a) Denoting the outcomes as (;, we have
uxln] = E[X[n]]
= Y P{GHX[. G
¢

s

1 . 7
= 3 (36[1@‘ + u[n — 1] + cos T—;) _

Rx[m,n] £ E[X[m]X*[n]]
- Z P{(;}] X [m, §;] X" [n, ;]

¢
1/ . . Tm T
= 3 (Qd[m]é[n[ +ulm —1un — 1]+ cos —5~ cos T) :

(e) We can summarize the RVs X[0] and X[1] with the following table.

C; | » X[O] X[j]
a é 3 0
% 1 1
|0 0

Thus P[X[0] = 3, X[1] = 0] = P{a}] = % The respective marginal probabilities are found
as P[X[0] = 3] = # and P[X[1] =0] = 3. Multiplying, we find

PIX[0] = 3,X[1]=0]=
12
33

= P[X[0] = 3|P[X[1] = 0],

!
3

-

therefore the RVs X[0] and X 1] are not independent.



Problem 6.5 (8.15 in Stark and Woods)

(a) The random variables X [n] and X[n —1] are jointly Gaussian distributed with zero means
and covariance matrix

o  po? , _
K= [ po? o with |p| < 1.
The determinant of this matrix is det K = o*(1 — p?). and the inverse matrix is found as
1 2 2
K_l — F J 2 p2g .
ot(1—p?) [ —po= o

We can then write their joint pdf as

. . 1 1
fX(xn-xn—l) = WEXD (—m (’Li — Qp.’l,’ni’n—l + x?z—])) .

Also the marginal pdf for X [n — 1] is given directly as

. 1 x?z—l
Ix(zp) = exp | — .

V270 202

We can the write the conditional density

Ix(xn, Tn)
Ix (_xn—l)
S S O S——
\/EO’ v,l_—pQ exp 202(1 — p2) Ln — PTn—1 ;

after recognizing the perfect square :3:-3L — 202,01 + J02;1731_1 = (2, — pn_1)?. Recognizing

fX (_xn|33n—] ) =

that this conditional density is N(pzp_1.0%(1—p?)). we can immediately write its conditional
mean

EX[n]|X[n—1]] =pX[n-—1].

(b) This predictor minimizes the mean square error over all functions ¢X|[n — 1)), i.e. it
minimizes E[(X[n] — g(X[n — 1])?] over all functions g. c.f. Example 4.3-4.



Problem 6.6 (8.17 in Stark and Woods)

We need the joint pdf fr(fs.11:10.5). Now

10
T(10] = > 7]

k=1
10
= T[5]+ > 7]
k=6

Calling X = Z,:c{]:ﬁ 7[k]. we see that by definition, X and 7'[5] are independent. This since
T[5] is a sum of earlier T[k|'s not included in the sum that is X. Thus

Fr(te. t1:10,5) = fr(talt;:10.5) fr(t1:5)
Jr(ta —t1: (10 = 5)) fr(t1:5)
= fr(ta —t1:5) fr(t:;5)

(A (t2 —11))* e Ata—tn) ATy )t
4! 4!

Ne Mty >t > 0.



