ECE 4260 Problem Set 3 Solutions

Problem 3.1: (3.24 in Stark and Woods)

(a) We have to calculate the running integral of the density fy-(y) = 5 exp(—c|y|). Now
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Because of the absolute value sign, it is easier to consider the two casesy <O and y > 0
separately. First we evaluate for y < 0, where fy(y) = §exp(+cy). We find
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= 3exp(cy) : for y < 0.
Now we consider the case y > 0, where fy-(y) = 5 exp(—cy). We note that by symmetry
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—exp(—cy), for y=>0.

Now, as a check, we note that both results agree at their common point y = 0 as they
should. Overall, we can write the Laplacian distribution function as

semp(ey), y <0,

R“”:{lémp(@L y 0.



(b)

Probably the first thing to do here is to note that since X : UJ[0, 1], we have that
Fx(z) = z{u(z)—u(z—1)}, i.e. just a straight line segment with slope 1 on [0, 1]. Since
the distribution function Fy- is monotone increasing, we have

Fz(z) = PIX < g7'(2)]

1

Next, we note that since g = F}7l, so g~ = Fy and hence

Fz(z) = PIX <g'(2)]
= Fx(Fy(2))
= Fy(z)(u(Fy(z)) —u(Fy(z)—1))
= Fy(2)(1-0)
= Fy(z).

This method strictly speaking will not work with either jumps or flat regions in the
desired distribution function Fy-. In a flat region of Fy-. the corresponding g would be a
vertical line, not be a valid tunction! At a jump of Fy, g = F;-l will not be defined for
some of the input values. This won't work either. On the other hand, there are simple
modifications ot this method that can get around these problems and make the basic
method useful in both cases. One simply has to remove the flat regions from Fy- before
finding the inverse function. At the jumps, where the inverse function would have a
gap, just fill it in with a horizontal line. With these changes the basic method extends
to both mixed and discrete distribution tunctions.



Problem 3.2: (3.30 in Stark and Woods)

Z, 2 max( X1, X2, . X,) and the X;s are independent RVs. Then

FZn(z} = P[Zﬂ. < z]

P[X, < z|P[X3 < z] .- P[X,, < 2]
(Fx(z))"

(1 — e *)™ulz).

Hence

dFz.(
fz.(z) = Z—zm

= n((1- e_z]”_le_zu(z].

The peak of this curve will occur at

0 = fz(2)=
n[-n — 1][:1 — B—ajn—ie—Qa _ 'n,{l _ e—zjn—le—z

= (n—1e" —(1—e"7) J
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which happens at ne™* =1 or z, = In(n). Forn =3, 2z, = 1.1 and fz;(z,) =~ 0444 See
sketch below for n = 3.
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As for the minimum, we have then Z, = max(X;, Xy, ..., X,). where again the X;s are

independent RVs. Then

Fz (z) = PlZ, < 7]
= 1—P[Z, > z]
= 1—-P[X, > z]P[X3 > z] - P[X,, > 7]
= 1—(1-Fx,(2))(1 = Fx,(2)--- (1 - Fx,(2))
= 1—-[1—-(1—e " u(z)]"



So the pdf 13 given as

fz.(z) = Fz(2)

Here 1s a sketch forn=1,2,3.

Additional Part:

Let U = min{ Xy, X5, ... X, ); V = max(Xq, Xy, .. X, );

fov(u,v) = n(n —1)fx lf'u}f.\:(ta‘][fu fx(x)dr]" 2
0<u<w
= 'le\ﬂ — 1}[6_'“}[6_’“}[@_“ . E—u]n—z

0<u<w

Problem 3.3 (3.36 in Stark and Woods)

()

We look at the transformation problem for two independent Normal random variables X and

Y - N(0,0?), transformed to Z = X2 +Y? and W £ X. We thus have
z=glz,y)=2"+y" and w=h(z,y) ==z

This is a non-invertible transformation with two real roots, for |w| < /z, 2 >0,



Rl :

x=w,y=+vz—w? and

RQZ

r=wy=—Vz—w?

Now at both roots the magnitude of the Jacobian 15 the same,

|Ji] = |Ja| =2V'z — w?, where
93 93 A

Jio = det gi gg =2y=42/z— w?.

: g 2
(b)
Hence
) 1 , Iy ) I
fzwlz,w) = —— (f.\'_.}'[w, Vz—w?)+ fxylw,—vz— w?})
2\/‘.’ - ’w2

_ #ﬁexp{—zﬁgz), lw| < /2,20
- 0. else.

We can find the marginal density fz either by integrating out the unwanted vanable in this
Joint density, or by using the result of Example 3.3-10 that Z will be Exponential distributed
(equivalently Chi-square with 2 degrees of freedom). Either way the answer 15
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Problem 3.4 (3.37 in Stark and Woods) (see notes at end)
Book’s solution below.

We want to find the pdf of the two variables

Z =aX +bY
W =ecX +dY
The joint pdf of X and ) are given as
Fv(2,y) = e,
) T 2me?y /1 = p?
where Q(x,y) = m 2? — 2pxy + y*]. Consider the inverse transformation, ie.
X =aZ + bW

Y =éZ +dW



Note that from the above transtormation, the solution of the two equations are given as x =

Gz-+bw and y = éz+dw. The term in the exponent of the pdf will be Eﬂ;ll__p-g—][:rg —2pzy+y?,
and this 15 given as '
;[J:E—Qp’ry-l—yz_ = ! (az + bw)? — 2p(éz + bw)(éz + dw) + (62 + dw)?
202(1 — p?) o 201 -0 U ’ : ' Lo ’

In this exponent. if the cross terms (terms that contain zw) vanish, then we would be able to
split the pdf in to the product of the two marginal pdf’s. In other words, if the coefficients
of the terms zw 1s zero, then we would be able to wnite fzw = fzfw. Therefore, we need

(2ab + 2&d — 2pad — 2pbé) = 0
***The solution below has a typo. It should read a=-b,c=d,ora=>b, c=-d. ***
. If we choze a = ¢,b = —d, the coefficient of zw will be zero. Then
r=az+bw
y=az—bw
."- a'- by = ] 2— 3—) — ] '] — ) 272 ¥ ] ) 2 "2- "
will give us m[ﬂ: Y 2pxy| m[?[l pla“z= + 2(1 4+ p)bw=|. Therefore.

roo—12 ro—2
Qlx. y) = % { ZJ&;E] + M] } The magnmitude of the Jacobian i1s given as
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where g(z,y) = 5¢, h(w,y) = ZE£. With o, £ 0yT—p/V2a, 02 £ 0T+ p/V/2b. Hence,
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Solutions as required in problem statement:
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Problem 3.5 (3.38 in Stark and Woods)

Let g(z,y) = ,;__;Lv and h(z,y) = "TB—E”E The real roots of g(z,y) = v, h(z,y) = w occur for

v > 0, |v| = |w| and are four in number.

) =+Hyrvtw, y=+Vrv—w
—— !

Ty = —rv4w, y=-+yv—w
—_— ;

Tz = —/Uv4+w, yYz=—v-—w
 AEEE— ;

LIJ_[_:—\V-"'L'—F'EU._ Y4 = —/U — W

We note that w can be negative, but never greater in magnitude than v. The magmtude of

J 18

33 23 o
abs| & 9 | =2[xy| =2¢/v? —w?,

and this is the same for all the four roots. Now observe: 2% + % = 2v for all the roots, and

21y = V2 — w? = 23z

ays = —V v —w? = x4y,

Hence
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T ai1—o%y
+ e 2{1—p=)

where the hyperbolic cosine function cosh(z) = %{Ex +e®). Forv<0or|v| < |w|, there
are no real roots of the transformation equations, so that we have fi(v, w) = 0 there.

Clearly they are not independent.



Problem 3.6 (4.19 in Stark and Woods)

Let the number of units manufactured at the various sites be denoted n 4. np, and ne, with
total number of units simply n. Then trom the problem statement we know that

nyg=3ng and np=2nc,

and of course n =n4 +np +nc. Then from classical probabilities, we get the probability of
a unit selected 'at random’ as

nA ng 2 ne

P[A] = — = g.P[B] = =3 and P[C] =
n o n n

A . . y . .
where we define event A = {unit comes from plant A}, and so forth for events B and C.
Now we can use the concept of conditional expectation to write

E[X| = E[X|A]P[Al+ E[X|B|P[B]+ E[X|C]|P|C]
1 [ - 6 1 > er o 2 1 [~ y 1
= = ze dr— + — we”%/65qpZ 4 — xe /1042
5 Jo 9 6.5/ 9 10 J, 9

6 2 1
= 55 + 6.5§ + 10§ 7= 5.89 years.

Problem 3.7 (4.20 in Stark and Woods)

We are asked to compute the expected value E[Y] of the received signal. Now
E[Y] = E[EY(9]]
_ f E[Y'|6](8)d8.

—oo
Now
EY©® =6 =6 by nspection of the given conditional Normal density.

Thus
1 21‘7

ElY] = — fdf = .
o 2 0 T



