ESE 4260 Problem Set 2 Solutions

Problem 2.1: (3.5 in Stark and Woods)

$$
\begin{aligned}
& f_{x}(x)=\alpha e^{-\alpha x} u(x) \\
& \bar{I}=e^{z} \quad \bar{X}=\ln (\bar{I}) \quad 1 \leq \bar{I} \leq \infty \\
& f_{\bar{I}}(y)=f_{ \pm}(\ln (y))\left|\frac{d \ln (y)}{d y}\right| \\
& =\alpha e^{-\alpha(\ln (y))} \frac{1}{y} u(y-1) \\
& =y^{-1} \alpha e^{-\ln (y)} u(y-1)=y^{-1} \alpha y^{-\alpha}=\alpha y^{-\alpha-1} u(y-1)
\end{aligned}
$$

(b) For this part, only the function g has changed, this time $g(x)=2 x+3$. We choose to use the indirect method, and find

$$
\begin{aligned}
F_{Y}(y) & =P[Y \leq y] \\
& =P\left[X \leq \frac{y-3}{2}\right] \\
& =F_{X}\left(\frac{y-3}{2}\right)
\end{aligned}
$$

Taking the derivative with respect to the free variable y, we get

$$
f_{Y}(y)=\frac{1}{2} f_{X}\left(\frac{y-3}{2}\right)
$$

which, for the exponential distribution with parameter α, becomes

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2} \alpha e^{-\alpha \frac{y-3}{2}} u\left(\frac{y-3}{2}\right) \\
& =\frac{\alpha}{2} e^{-\frac{\alpha}{2}(y-3)} u(y-3)
\end{aligned}
$$

Problem 2.2 (3.7 in Stark and Woods)

We present two methods to solve this transformation problem:
Method (1): For $y>0$

$$
P[Y \leq y]=P\left[e^{X} \leq y\right]=P[X \leq \ln y]=F_{X}(\ln y) .
$$

Hence

$$
f_{Y}(y)=\frac{d F_{X}(\ln y)}{d y}=\frac{d F_{X}(\ln y)}{d(\ln y)} \frac{d(\ln y)}{d y}=\frac{1}{y} f_{X}(\ln y) .
$$

For $y \leq 0$

$$
P[Y \leq y]=P\left[e^{X} \leq y\right]=P[\phi]=0 .
$$

Hence

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma y} \exp \left[-\frac{1}{2}\left(\frac{\ln y-\mu}{\sigma}\right)^{2}\right] u(y) .
$$

Method (2): A plot of $y=g(x)$ is is $x=\ln y$, for $y>0$ as given in Fig. 4.

Figure 4:

$$
f_{Y}(y)=\sum_{i=1}^{r} \frac{f_{X}\left(x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}=f_{X}(\ln y) /\left.e^{x}\right|_{x=\ln y} .
$$

For $y \leq 0$, there is no real solution to $y-g(x)=0$; hence for $y \leq 0$, the pdf of Y equals zero there. Combining solutions for both regions of y, we get

$$
f_{Y}(y)=\frac{f_{X}(\ln y)}{y} u(y) .
$$

Problem 2.3 (3.10 in Stark and Woods)

Here is the plot of $y=g(x)$ in Fig. 8: $y-g(x)=0$ is $y=\sqrt{x}$, or $x=y^{2}$. For $y<0$, no real solutions exist to $y-g(x)=0$. Hence

$$
f_{Y}(y)=\left.\frac{f_{X}(x)}{g^{\prime}(x)}\right|_{x=y^{2}} .
$$

Figure 8:
Now

$$
g^{\prime}(x)=\left.\frac{1}{2} x^{-\frac{1}{2}}\right|_{x=y^{2}}=\frac{1}{2 y},
$$

thus

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\sqrt{\frac{2}{\pi}} y e^{-\frac{1}{2} y^{4}}, & y>0 \\
0, & y<0
\end{array}\right.
$$

But at $y=0$ there is a probability mass, jump in the distribution function, and impulse in the density function. We have

$$
\begin{aligned}
P[Y=0] & =P[X \leq 0] \\
& =F_{Y}(0)=\frac{1}{2}
\end{aligned}
$$

thus

$$
F_{Y}(0)=\frac{1}{2} \int_{-\epsilon}^{\epsilon} \delta(y) d y .
$$

So, combining results, we have the following answer valid for all y,

$$
f_{Y}(y)=\frac{1}{2} \delta(y)+\sqrt{\frac{2}{\pi}} y e^{-\frac{1}{2} y^{4}} u(y) .
$$

Problem 2.4 (3.17 in Stark and Woods)

Since the random variables X and Y are independent, we can find the density of Z via convolution of the two uniform densities f_{X} and f_{Y}, thus

$$
\begin{aligned}
f_{Z}(z) & =f_{X}(z) * f_{Y}(z) \\
& =\int_{-\infty}^{+\infty} f_{X}(z-x) f_{Y}(x) d x
\end{aligned}
$$

Here, by the problem statement $X: U(-1,+1)$ and hence

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{2}, & -1<x<+1 \\
0, & \text { else } .
\end{array}\right.
$$

Similarly Y : $U(-2,+2)$ and so

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{4}, & -2<y<+2 \\
0, & \text { else } .
\end{array}\right.
$$

Computing the convolution graphically, we see that the resulting function f_{Z} will be constant when the short pulse f_{X} is completely contained inside the longer pulse f_{Y}, and that this will occur for $-1 \leq z \leq+1$, for which the area is easily computed as $\frac{1}{2} \times \frac{1}{4} \times 2=\frac{1}{4}$. From graphical considerations, we can also easily see that the output function f_{z} must be zero when the two pulses do not overlap, and that this will occur for all $|z|>3$. For $3 \geq|z|>1$, we then just connect these result together via straight lines, to obtain

$$
f_{z}(z)=\left\{\begin{array}{cc}
0, & z<-3, \\
\frac{1}{8}(z+3), & -3 \leq z<-1 \\
\frac{1}{4}, & -1 \leq z \leq+1, \\
\frac{1}{8}(-z+3), & +1<z \leq+3 \\
0, & z>+3
\end{array},\right.
$$

which is graphed as Fig. 16.

Figure 16:

The problem assignment shifted $f_{x}(x)$ by 1 to the left and $f y(y)$ by two to the right. So the answer is the graph above shifted 1 to the right.

Problem 2.5 (3.22 in Stark and Woods)

If we added two independent random numbers with uniform density over (0.1], then result of the convolution of the two would be a random variable with the pdf shown in fFgure 17. All we need to do to get the desired pdf (Figure 18) is to subtract 1 from the rv derived above,

Figure 17:

Figure 18:

