ECE 4260 Problem Set 12 Solutions

Problem 12.1 (10.7 in Stark and Woods)
We have that I(T) £ & [T X(t)dt, T >0.
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where we have made the substitution 7 =+ — s £ = ¢+ 5, two lines above, and then integrated
out n the variable £.

E




Problem 12.2 (10.22 in Stark and Woods)

We have two hypotheses
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(a) (1) Under hypothesis Hy :
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(b) For the variances, under Hy :
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Under hypothesis H;, the variance 12 the same since there 1z only a shift in the DC value.
Thus under each hypothesis o3 = 2T
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where Ag = AT/2. Let ﬁ =1, then da = opdn. Also o = % which 1mphes n = ,‘;—T;
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Problem 12.3 (10.26 in Stark and Woods)

Define the one-parameter covariance function K x x (1) 2 Kyx (s+71,8) = o cos wpT, which 1s
zeen to be periodic in 7 and independent of s. Then since the mean py 13 constant, we have
a WSS periodic random procesz. For theze processes, the Fourier series expanzion coefficients
are orthogonal, 1.e. the Fourier series basis set 13 also the Karhunen-Loeve basis set. The
period of Kxx(7)is T = i—'or Hence, any interval of the time axis of width T" will do for the
expansion.



Problem 12.4 (10.27 in Stark and Woods)

By the equation (10.5-3),

T/2
/ Kxx(ti,ta)o(t2) dtz = Mg (t1),

we have
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Because Ay # Aa, 1t must be that the indicated integral 15 zero.

Problem 12.5 (10.44 in Stark and Woods)

(a) Since the noise process 13 Gaussian, the K-L expansion ensures independence of the
transtormed coefficients. The other .R:CS are thus independent of By . which 1s the only
one containing the message. Thus

P[Ry, < r|{ all other R;‘_..s} =P[Ry, <r

(b) Since A 1s the nolse mean-square level on basis function (channel) k&, we want the smallest
Ap for the signaling channel. So we want k, = oc. Of course, practical conditions would
intercede 1n reality, forcing a lower finite choice.



Problem 12.6
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Problem 12.8 (10.4 in Stark and Woods)

The random process X () is stationary with mean fy and covariance function
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(a) We have to show that Ry x(7) has derivatives up to order two. Because X () is stationary,
the mean is constant, so that i/, (¢) = 0, therefore
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which exists for all 7. and hence, for 7 = 0. Therefore the m.s. derivative exists for all finite
t.



