ECE 4260 Problem Set 12 Solutions

Problem 12.1 (10.7 in Stark and Woods)

We have that $I(T) \triangleq \frac{1}{T} \int_{0}^{T} X(t) d t, \quad T>0$.
(a)

$$
\begin{aligned}
E[I(T)] & =E\left[\frac{1}{T} \int_{0}^{T} X(t) d t\right] \\
& =\frac{1}{T} E\left[\int_{0}^{T} X(t) d t\right] \\
& =\frac{1}{T} \int_{0}^{T} E[X(t)] d t \\
& =\frac{1}{T} \int_{0}^{T} \mu_{X} d t \\
& =\mu_{X} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{I(T)}^{2}= & E\left[(I(T)-E[I(T)])^{2}\right] \\
= & E\left[\left(\frac{1}{T} \int_{0}^{T} X(t) d t-\mu_{X}\right)^{2}\right] \\
& E\left[\left(\frac{1}{T} \int_{0}^{T}\left(X(t)-\mu_{X}\right) d t\right)^{2}\right] \\
= & \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} K_{X X}(t-s) d t d s \\
= & \frac{1}{T^{2}} \int_{-T}^{T}(T-|\tau|) K_{X X}(\tau) d \tau \\
= & \frac{1}{T} \int_{-T}^{T}\left(\frac{T-|\tau|}{T}\right) K_{X X}(\tau) d \tau
\end{aligned}
$$

where we have made the substitution $\tau \triangleq t-s, \xi \triangleq t+s$, two lines above, and then integrated out in the variable ξ.

Problem 12.2 (10.22 in Stark and Woods)

We have two hypotheses

$$
\begin{gathered}
\left.\begin{array}{c}
H_{0}: \\
H_{1}: \\
R(t)=A+W(t) \\
\\
\Lambda=\int_{0}^{T} R(t) d t
\end{array}\right\} 0 \leq t \leq T \\
\end{gathered}
$$

(a) (i) Under hypothesis H_{0} :

$$
\begin{aligned}
E\left[\Lambda \mid H_{0}\right] & =E\left[\int_{0}^{T} R(t) d t \mid H_{0}\right] \\
& =E\left[\int_{0}^{T} W(t) d t\right] \\
& =E[0]=0
\end{aligned}
$$

(ii) Under hypothesis H_{1} :

$$
\begin{aligned}
E\left[\Lambda \mid H_{1}\right]= & E\left[\int_{0}^{T} R(t) d t \mid H_{1}\right] \\
= & E\left[\int_{0}^{T}(A+W(t)) d t\right] \\
& E\left[\int_{0}^{T} A d t\right] \\
= & E[A T]=A T
\end{aligned}
$$

(b) For the variances, under H_{0} :

$$
\begin{aligned}
\sigma_{\Lambda}^{2} & =E\left[\left(\Lambda-\mu_{\Lambda}\right)^{2} \mid H_{0}\right] \\
& =E\left[\left(\int_{0}^{T} W(t) d t-\int_{0}^{T} \mu_{W}(t) d t\right)^{2} \mid H_{0}\right] \\
& =E\left[\left(\int_{0}^{T} W(t) d t-0\right)^{2}\right] \\
& =E\left[\int_{0}^{T} \int_{0}^{T} W\left(t_{1}\right) W\left(t_{2}\right) d t_{1} d t_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{T} \int_{0}^{T} \sigma^{2} \delta\left(t_{1}-t_{2}\right) d t_{1} d t_{2} \\
& =\sigma^{2} T
\end{aligned}
$$

Under hypothesis H_{1}, the variance is the same since there is only a shift in the DC value. Thus under each hypothesis $\sigma_{\Lambda}^{2}=\sigma^{2} T$.
(c)

$$
P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right]=\frac{1}{\sqrt{2 \pi \sigma_{\Lambda}^{2}}} \int_{\Lambda_{0}}^{\infty} e^{-\frac{\alpha^{2}}{2 \sigma_{\Lambda}^{2}}} d \alpha,
$$

where $\Lambda_{0} \triangleq A T / 2$. Let $\frac{\alpha}{\sigma_{\Lambda}}=\eta$, then $d \alpha=\sigma_{\Lambda} d \eta$. Also $\alpha=\frac{A T}{2}$, which implies $\eta=\frac{A T}{2 \sigma_{\Lambda}}$.

Then

$$
\begin{aligned}
P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right] & =\frac{\sigma_{\Lambda}}{\sqrt{2 \pi} \sigma_{\Lambda}} \int_{\frac{A T}{2 \sigma_{\Lambda}}}^{\infty} e^{-\frac{\eta^{2}}{2}} d \eta \\
& =\frac{1}{2}-\operatorname{erf}\left(\frac{A T}{2 \sigma_{\Lambda}}\right) \\
& =\frac{1}{2}-\operatorname{erf}\left(\frac{A T}{2 \sigma \sqrt{T}}\right) \\
& =\frac{1}{2}-\operatorname{erf}\left(\frac{A \sqrt{T}}{2 \sigma}\right)
\end{aligned}
$$

Problem 12.3 (10.26 in Stark and Woods)

Define the one-parameter covariance function $K_{X X}(\tau) \triangleq K_{X X}(s+\tau, s)=\sigma^{2} \cos \omega_{0} \tau$, which is seen to be periodic in τ and independent of s. Then since the mean μ_{X} is constant, we have a WSS periodic random process. For these processes, the Fourier series expansion coefficients are orthogonal, i.e. the Fourier series basis set is also the Karhunen-Loeve basis set. The period of $K_{X X}(\tau)$ is $T \triangleq \frac{2 \pi}{\omega_{0}}$. Hence, any interval of the time axis of width T will do for the expansion.

Problem 12.4 (10.27 in Stark and Woods)

By the equation (10.5-3),

$$
\int_{-T / 2}^{T / 2} K_{X X}\left(t_{1}, t_{2}\right) \phi_{1}\left(t_{2}\right) d t_{2}=\lambda_{1} \phi_{1}\left(t_{1}\right)
$$

we have

$$
\begin{aligned}
\int_{-T / 2}^{T / 2} \phi_{1}(t) \phi_{2}^{*}(t) d t & =\frac{1}{\lambda_{1}} \int_{-T / 2}^{T / 2} \int_{-T / 2}^{T / 2} K_{X X}\left(t, t_{2}\right) \phi_{1}\left(t_{2}\right) \phi_{2}^{*}(t) d t d t_{2} \\
& =\frac{1}{\lambda_{1}} \int_{-T / 2}^{T / 2} \phi_{1}\left(t_{2}\right)\left(\int_{-T / 2}^{T / 2} K_{X X}^{*}\left(t_{2}, t\right) \phi_{2}^{*}(t) d t\right) d t_{2} \\
& =\frac{1}{\lambda_{1}} \int_{-T / 2}^{T / 2} \phi_{1}\left(t_{2}\right) \lambda_{2}^{*} \phi_{2}^{*}\left(t_{2}\right) d t_{2} \\
& =\frac{\lambda_{2}^{*}}{\lambda_{1}} \int_{-T / 2}^{T / 2} \phi_{1}(t) \phi_{2}^{*}(t) d t \\
& =\frac{\lambda_{2}}{\lambda_{1}} \int_{-T / 2}^{T / 2} \phi_{1}(t) \phi_{2}^{*}(t) d t, \text { since the } \lambda_{i} \text { are real. }
\end{aligned}
$$

Because $\lambda_{1} \neq \lambda_{2}$, it must be that the indicated integral is zero.

Problem 12.5 (10.44 in Stark and Woods)

(a) Since the noise process is Gaussian, the K-L expansion ensures independence of the transformed coefficients. The other $R_{k}^{\prime} s$ are thus independent of $R_{k_{o}}$, which is the only one containing the message. Thus

$$
P\left[R_{k_{o}} \leq r \mid\left\{\text { all other } R_{k}^{\prime} s\right\}\right]=P\left[R_{k_{o}} \leq r\right]
$$

(b) Since λ_{k} is the noise mean-square level on basis function (channel) k, we want the smallest λ_{k} for the signaling channel. So we want $k_{o}=\infty$. Of course, practical conditions would intercede in reality, forcing a lower finite choice.

Problem 12.6
(a) $\int_{0}^{T} \delta\left(t_{1}-t_{2}\right) \phi_{k}\left(t_{2}\right) d t_{2}=\lambda_{k} \phi_{k}\left(t_{1}\right)$

Clearly, any orthonurmal bass set works. $\lambda_{k}=1 \forall k$.
(b)

$$
\begin{aligned}
& \int_{0}^{T} f\left(t_{1}\right) f\left(t_{2}\right) \phi_{k}\left(t_{2}\right) d t_{2}=\lambda_{k} \phi_{k}\left(t_{1}\right) \\
& =\frac{\lambda_{k}}{f\left(t_{1}\right) \int_{0}^{T} f\left(t_{2}\right) \phi_{k}\left(t_{2}\right) d t_{2}=\lambda_{k} \phi_{k}\left(t_{1}\right)} \\
& \therefore f(t)=\phi_{k}(t)-\text { mbge eigentinction }
\end{aligned}
$$

Problem 12.7
(a)

$$
\begin{gathered}
\qquad E \int_{0}^{T} X^{2}(t) d t=E \int_{0}^{t} \sum_{i} I_{i} \phi_{i}(t) \sum_{j} \Sigma_{j}^{*} \phi_{j}^{*}(t) d t \\
=E \sum_{i}\left|X_{i}\right|^{2}=\sum_{i} \lambda_{i}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\underline{\underline{I}}(t)= & \int_{0}^{T} \phi_{1}(t) \phi_{3}^{t}(u) \sum_{i}^{T} \Sigma_{i} \phi_{i}(u) d u \\
& +\int_{0}^{T} \phi_{2}(t) \phi_{3}^{*}(u) \sum_{i} \mathbb{X}_{i} \phi_{i}(u) d u \\
= & \bar{X}_{3}\left(\phi_{1}(t)+\phi_{2}(t)\right)
\end{aligned}
$$

Problem 12.8 (10.4 in Stark and Woods)

The random process $X(t)$ is stationary with mean μ_{X} and covariance function

$$
K_{X X}(\tau)=\frac{\sigma_{X}^{2}}{1+\alpha^{2} \tau^{2}}
$$

(a) We have to show that $R_{X X}(\tau)$ has derivatives up to order two. Because $X(t)$ is stationary, the mean is constant, so that $\mu_{X}^{\prime}(t)=0$, therefore

$$
\begin{aligned}
\frac{d R_{X X}(\tau)}{d \tau} & =\frac{d K_{X X}(\tau)}{d \tau} \\
& =\frac{-\alpha^{2} \tau \sigma_{X}^{2}}{\left(1+\alpha^{2} \tau^{2}\right)^{2}}, \text { which exists for all finite } \tau
\end{aligned}
$$

Next

$$
\begin{aligned}
\frac{d^{2} K_{X X}(\tau)}{d \tau^{2}} & =\frac{d}{d \tau}\left(\frac{-2 \alpha^{2} \tau}{\left(1+\alpha^{2} \tau^{2}\right)^{2}}\right) \sigma_{X}^{2} \\
& =\frac{-2 \alpha^{2}\left(1+\alpha^{2} \tau^{2}\right)^{2}+2 \alpha^{2} \tau \cdot 2 \cdot 2 \alpha^{2} \tau\left(1+\alpha^{2} \tau^{2}\right)}{\left(1+\alpha^{2} \tau^{2}\right)^{4}} \sigma_{X}^{2} \\
& =\frac{-2 \alpha^{2}\left(1+\alpha^{2} \tau^{2}\right)+8 \alpha^{4} \tau^{2}}{\left(1+\alpha^{2} \tau^{2}\right)^{3}} \sigma_{X}^{2} \\
& =\frac{-2 \alpha^{2}\left(1-3 \alpha^{2} \tau^{2}\right)}{\left(1+\alpha^{2} \tau^{2}\right)^{3}} \sigma_{X}^{2}
\end{aligned}
$$

which exists for all τ, and hence, for $\tau=0$. Therefore the m.s. derivative exists for all finite t.

