ECE 4260 Problem Set 1 Solutions

Problem 1.1: (2.21 in Stark and Woods)

The random variables X and Y have joint probability density function (pdf)

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{3}{4} x^{2}(1-y), & 0 \leq x \leq 2,0 \leq y \leq 1 \\
0, & \text { else. }
\end{array}\right.
$$

(a) To find $P[X \leq 0.5]$, we start with

$$
\begin{aligned}
P[X & \leq 0.5]=\int_{-\infty}^{0.5} \int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{0.5} \int_{0}^{1} \frac{3}{4} x^{2}(1-y) d x d y \\
& =\frac{3}{4}\left(\int_{0}^{0.5} x^{2} d x\right)\left(\int_{0}^{1}(1-y) d y\right) \\
& =\frac{3}{4}\left(\left.\frac{x^{3}}{3}\right|_{0} ^{0.5}\right)\left(\left.\left(y-\frac{y^{2}}{2}\right)\right|_{0} ^{1}\right) \\
& =\frac{3}{4} \frac{1}{24}\left(1-\frac{1}{2}\right)=\frac{1}{64} .
\end{aligned}
$$

(b) By definition

$$
\begin{aligned}
F_{Y}(0.5) & =P[Y \leq 0.5] \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{0.5} f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{0.5} \frac{3}{4} x^{2}(1-y) d x d y \\
& =\frac{3}{4}\left(\left.\frac{x^{3}}{3}\right|_{0} ^{2}\right)\left(\left.\left(y-\frac{y^{2}}{2}\right)\right|_{0} ^{0.5}\right) \\
& =\frac{3}{4} \frac{8}{3}\left(\frac{1}{2}-\frac{1}{8}\right)=\frac{3}{4} .
\end{aligned}
$$

(c) To find $P[X \leq 0.5 \mid Y \leq 0.5]$, we note that X and Y are independent random variables, so the answer is the same as in part a), namely $P[X \leq 0.5 \mid Y \leq 0.5]=P[X \leq 0.5]=\frac{1}{64}$. However, we can also calculate directly,

$$
\begin{aligned}
P[X & \leq 0.5 \mid Y \leq 0.5]=\frac{P[X \leq 0.5, Y \leq 0.5]}{P[Y \leq 0.5]} \\
& =\int_{0}^{0.5} \int_{0}^{0.5} \frac{3}{4} x^{2}(1-y) d x d y /\left(\frac{3}{4}\right) \\
& =\frac{3}{4} \frac{1}{24}\left(\frac{1}{2}-\frac{1}{8}\right) /\left(\frac{3}{4}\right)=\frac{1}{64}
\end{aligned}
$$

(d) Here, we can note again that X and Y are independent random variables for the given joint pdf, and thus

$$
\begin{aligned}
P[Y & \leq 0.5 \mid X \leq 0.5]=P[Y \leq 0.5] \\
& =\frac{3}{4} \text { from part b) }
\end{aligned}
$$

Problem 1.2 (2.22 in Stark and Woods)

To check for independence, we need to look at the marginal pdfs of X and Y. How do we find the pdf's? We can use the property that the pdf must integrate to 1. Say $f_{X}(x)=$ $A e^{-\frac{1}{2}\left(\frac{\alpha}{3}\right)^{2}} u(x)$, and $\int_{0}^{\infty} f_{X}(x) d x=1$, we find $A=\frac{2}{3 \sqrt{2 \pi}}$. Similarly, $f_{Y}(y)=B e^{-\frac{1}{2}\left(\frac{x}{2}\right)^{2}} u(y)$,
and $\int_{0}^{\infty} f_{Y}(y) d y=1$, so $B=\frac{2}{2 \sqrt{2 \pi}}$. Multiplying the two marginal pdfs, we see that the product is indeed equal to joint pdf; i.e., $f_{X}(x) f_{Y}(y)=f_{X, Y}(x, y)$. Therefore, X and Y are independent random variables; their joint probability factors and hence $P[0<X \leq 3,0<$ $Y \leq 2]=P[0<X \leq 3] P[0<Y \leq 2]$. Thus

$$
\begin{aligned}
P[0<X \leq 3] & =\int_{-3}^{3} \frac{2}{3 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x}{3}\right)^{2}} d x \\
& =2 \times \frac{2}{3 \sqrt{2 \pi}} \int_{0}^{3} e^{-\frac{1}{2}\left(\frac{x}{3}\right)^{2}} d x=2 \operatorname{erf}(1) \\
P[0<Y \leq 2] & =\int_{-2}^{2} \frac{2}{2 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y}{2}\right)^{2}} d y \\
& =2 \times \frac{2}{2 \sqrt{2 \pi}} \int_{0}^{2} e^{-\frac{1}{2}\left(\frac{y}{2}\right)^{2}} d y=2 \operatorname{erf}(1)
\end{aligned}
$$

So

$$
\begin{aligned}
P[0 & <X \leq 3,0<Y \leq 2]=P[0<X \leq 3] P[0<Y \leq 2] \\
& =2 \operatorname{erf}(1) \times 2 \operatorname{erf}(1)=4 \operatorname{erf}(1)^{2} \doteq 0.466
\end{aligned}
$$

Problem 1.3 (2.25 in Stark and Woods)

We use Bayes' formula for pdf's:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

We have

$$
f_{X}(x)=\frac{1}{2} \operatorname{rect}\left(\frac{x}{2}\right) .
$$

Then

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X Y}(x, y) d x=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x \\
& =\int_{-1}^{1} \frac{1}{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(y-x)^{2}}{2 \sigma^{2}}\right] d x .
\end{aligned}
$$

Let $\xi=\frac{x-y}{\sigma}$, then $d \xi=\frac{d x}{\sigma}$ and we obtain

$$
f_{Y}(y)=\frac{1}{2} \int_{\frac{-1-y}{\sigma}}^{\frac{1-y}{\sigma}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \xi^{2}} d \xi=\frac{1}{2}\left[\operatorname{erf}\left(\frac{1-y}{\sigma}\right)-\operatorname{erf}\left(\frac{-1-y}{\sigma}\right)\right] .
$$

But $\operatorname{erf}(x)=-\operatorname{erf}(-x)$, hence

$$
f_{Y}(y)=\frac{1}{2}\left[\operatorname{erf}\left(\frac{1+y}{\sigma}\right)-\operatorname{erf}\left(\frac{y-1}{\sigma}\right)\right] .
$$

Then finally

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(y-x)^{2}}{2 \sigma^{2}}\right] \operatorname{rect}\left(\frac{x}{2}\right)}{\operatorname{erf}\left(\frac{1+y}{\sigma}\right)-\operatorname{erf}\left(\frac{y-1}{\sigma}\right)} .
$$

Problem 1.4 (2.27 in Stark and Woods)

$$
\begin{aligned}
P[A] & =P[T>30]=1-F_{T}(30) \\
P[B] & =P[T \leq 31]=F_{T}(31) \\
P[A B] & =P[30<T \leq 31]=F_{T}(31)-F_{T} \\
P[B \mid A]=\frac{P[A B]}{P[A]} & =\frac{F_{T}(31)-F_{T}(30)}{1-F_{T}(30)} \\
& =\frac{\frac{31-30}{60}}{\frac{60-30}{60}}=\frac{1}{30} . \\
P[A \mid B] & =\frac{P[A B]}{P[B]}=\frac{F_{T}(31)-F_{T}(30)}{F_{T}(31)} \\
& =\frac{\frac{31-30}{60}}{\frac{31}{60}}=\frac{1}{31} .
\end{aligned}
$$

Problem 1.5 (2.36 in Stark and Woods).

The problem was modified to change 0.95 to $\mathbf{0 . 6 8 2 5}$. Substitute $\mathbf{0 . 6 8 2 6}$ for $\mathbf{0 . 9 5}$ in the last lines, giving: $-\ln (1-0.6826)=1.148 ; c^{2}=2.296 ; c=1.515$.

$$
\begin{aligned}
P\left[X^{2}+Y^{2} \leq c^{2}\right] & =\iint_{(x, y): x^{2}+y^{2} \leq c^{2}} \frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y, \quad \text { transform to polar coordinates } \\
& =\frac{1}{2 \pi} \int_{0}^{c} \int_{0}^{2 \pi} e^{-\frac{1}{2} r^{2}} r d r d \theta, \quad \text { with } r=\sqrt{x^{2}+y^{2}} \text { and } d x d y=r d r d \theta \\
& =\int_{0}^{c} e^{-\frac{1}{2} r^{2}} r d r, \quad \text { let } u \triangleq \frac{1}{2} r^{2}, \quad \text { then } d u=r d r \\
& =\int_{0}^{c^{2} / 2} e^{-u} d u \\
& =1-e^{-c^{2} / 2}=0.95
\end{aligned}
$$

Thus we need

$$
\begin{aligned}
\frac{c^{2}}{2} & =\ln \frac{1}{1-0.95}=\ln 20 \simeq 3 \\
c & \simeq \sqrt{6}=2.45
\end{aligned}
$$

Problem 1.6 (2.37 in Stark and Woods)

Note: The problem was modified in parts (b) and (d) to exchange X with Y. By symmetry, simply exchange the variables in the answer
(a) Since the area of this square with side $\sqrt{2}$ is 2 , constant joint density $f_{X, Y}$ must take on value $\frac{1}{2}$ to be properly normalized, thus $A=\frac{1}{2}$.
(b) We can see four regions for the y values in evaluating

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y
$$

These regions are $x \leq-1,-1<x<0,0 \leq x<1$, and $x \geq 1$. Now, the first and last of these regions gives the trivial result $f_{X}(x)=0$. For $0 \leq x<1$, we get

$$
f_{X}(x)=\int_{x-1}^{1-x} \frac{1}{2} d y=\frac{1}{2}(1-x-x+1)=1-x .
$$

Similarly for $-1<x<0$, we get

$$
f_{X}(x)=\int_{-x-1}^{1+x} \frac{1}{2} d y=\frac{1}{2}(1+x+x+1)=1+x
$$

Combining these regions we finally get

$$
f_{X}(x)=\left\{\begin{array}{cc}
1-|x|, & |x|<1 \\
0, & \text { else }
\end{array}\right.
$$

(c) If X is close to 1 , then we see that Y must be close to 0 . This suggests dependen between X and Y. To be sure we can use the result of part b together with the symmet of the joint density to check whether $f_{X, Y}=f_{X} f_{Y}$ or not. By symmetry of $f_{X, Y}$ must also be that

$$
f_{Y}(y)=\left\{\begin{array}{cc}
1-|y|, & |y|<1 \\
0, & \text { else }
\end{array}\right.
$$

Now the product of these two triangles $(1-|x|)(1-|y|) \neq \frac{1}{2}$ on $\operatorname{supp}\left(f_{X, Y}\right)$, so t . random variables are definitely dependent. (The support of a function $f(x)$ is the set domain values $\{x \mid f(x) \neq 0\}$ and is written as $\operatorname{supp}\{f\}$.)
(d) We start with the definition and then plug in our result from part b:

$$
\begin{aligned}
f_{Y \mid X}(y \mid x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\
& =\left\{\begin{array}{cc}
\frac{0.5}{1-|x|}, & 0 \leq|x|+|y|<1 \\
0, & \text { otherwise in }\{|x|<1\} \\
\times, & |x| \geq 1
\end{array}\right.
\end{aligned}
$$

Note that the conditional density is not defined for $\{|x| \geq 1\}$.
For parts (b) and (d), please note that by symmetry, the variables X and Y can be exchanged without change to the answer.

