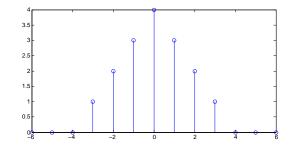
GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

ECE 4260A

Problem Set #7

Date assigned: March 3, 2017 Date due: March 10, 2017

Reading: Read Chapter 8 in Stark and Woods.


Problem 7.1:

- (a) A discrete-time random process has sample functions of the form: X[n] = A where A is a Gaussian random variable of mean 2 and variance 1.
 - (i) Find the mean of X[n].
 - (ii) Find the power in X[n].
 - (iii) Find $R_X[m_1, m_2]$, the autocorrelation function of X[n].
 - (iv) Is X[n] deterministic or not? Justify your answer.
- (b) W[n] is zero mean discrete-time WSS white noise with spectral height of 1.
 - (i) What is its power?

W[n] is put through an ideal lowpass filter with gain 1 and cutoff $\pi/3$ radians. The filter's corresponding impulse response is $\frac{\sin \frac{\pi}{3}n}{\pi n}$. The output is Y[n].

- (ii) Find $R_{YY}[m]$.
- (iii) Find the variance of Y[n].
- (iv) Find $R_{YW}[m]$

(c) G[n] is stationary, zero mean, and has autocorrelation function as sketched below:

- (i) If G[n] is Gaussian, find the joint PDF for [G[1], G[2]]
- (ii) Find $\frac{1}{2\pi} \int_{-\pi}^{\pi} S_G(\omega) d\omega$ where $S_G(\omega)$ is the power spectral density of G[n].
- (iii) G[n] is input to a system with impulse response equal to $\delta[n-7]$ (i.e., a delay by 7). The output is F[n]. Find $R_{GF}[m]$.
- (d) J[n] and K[n] are independent, zero mean stationary random processes. $R_{JJ}[m] = 2e^{-|m|}$; $R_{KK}[m] = 3e^{-(m^2)}$.
 - (i) Find the power in 3J[n] 2K[m].
 - (ii) Let L[m] = J[m] + K[m]. Find $R_{LJ}[m]$.
 - (iii) J[n] was obtained by passing unit spectral height white noise through a filter. Find a possible impulse response for that filter.

Problem 7.2:

Work problem 8.22 in Stark and Woods.

Problem 7.3:

Work problem 8.24 in Stark and Woods.

Problem 7.4:

Work problem 8.26 in Stark and Woods.

Problem 7.5:

Work problem 8.32 in Stark and Woods.

Problem 7.6:

Work problem 8.36 in Stark and Woods.