GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering
ECE 4260

Problem Set \#10
Date assigned: April 5, 2017
Date due: April 12, 2017

Reading: Continue reading Chapter 9 in Stark and Woods.

Reminder: The final exam will be Wednesday May 3, 2017. You may bring in 3 handwritten sheets of notes. Various tables will be provided.

Problem 10.1:

Work problem 9.5 in Stark and Woods

Problem 10.2:

Work problem 9.6 in Stark and Woods

Problem 10.3:

Work problem 9.7 in Stark and Woods

Problem 10.4:

Consider the random telegraph signal (RTS) as developed in Section 9.2, specifically pp 557-558, in Stark and Woods. A different contruct proceeds as follows:

- The process, $X(t)$, started at $-\infty$.
- Events occur in a Poisson fashion with rate λ.
- Each Poisson event defines the start of a new interval.
- Each interval is independent of all others.
- Each interval takes on the value +1 or -1 with equal probablity.
(a) Is the process WSS?
(b) Find $R_{X X}\left(t_{1}, t_{2}\right)$.
(c) Let $Y(t)=a X(t)$. Find $R_{Y Y}\left(t_{1}, t_{2}\right)$.
(d) Let $V(t)=0.5(X(t)+1)$. Find $R_{V V}\left(t_{1}, t_{2}\right)$.
(e) Now change the Poisson rate to 2λ. Why is $R_{Y Y}\left(t_{1}, t_{2}\right)$ the same as that obtained for the book's RTS ACF?

Problem 10.5:

Consider the RTS as defined above, but let the interarrival time between events follow a second order Erlang. Find $R_{X X}\left(t_{1}, t_{2}\right)$.

